#include <opencv2\opencv.hpp>
#include <ikmeans.h>
using namespace std;
using namespace cv;
#pragma comment(lib, "opencv_core246.lib")
#pragma comment(lib, "opencv_highgui246.lib")
#pragma comment(lib, "vl.lib")
int main()
{
// data generation
unsigned char data[200];
RNG rng(time(0));
for (int i = 0; i < 50; i++)
{
data[i*2] = rng.uniform(20, 100);
data[i*2+1] = rng.uniform(150, 230);
data[100+i*2] = rng.uniform(150, 230);
data[100+i*2+1] = rng.uniform(20, 100);
}
// kmeans initialization
VlIKMFilt *ikm = vl_ikm_new(VlIKMAlgorithms::VL_IKM_LLOYD);
vl_ikm_init_rand(ikm, 2, 2);
// kmeans clustering
vl_ikm_train(ikm, (const vl_uint8 *)data, 100);
// get centers
const vl_ikm_acc *centers = vl_ikm_get_centers(ikm);
// quanization
vl_uint assignments[100];
vl_ikm_push(ikm, assignments, data, 100);
// result visualization
Mat image(250, 250, CV_8UC3);
circle(image, Point(centers[0],centers[1]), 3, Scalar(255,0,0), 2);
circle(image, Point(centers[2],centers[3]), 3, Scalar(0,0,255), 2);
for (int i = 0; i < 100; i++)
{
if (assignments[i] == 0)
circle(image, Point(data[i*2],data[i*2+1]), 1, Scalar(255,0,0), 2);
else
circle(image, Point(data[i*2],data[i*2+1]), 1, Scalar(0,0,255), 2);
}
cvShowImage("Image", &(IplImage)image);
waitKey();
// termination
vl_ikm_delete(ikm);
return 0;
}
2013년 7월 18일 목요일
K-means Clustering using VLFeat
#include <opencv2\opencv.hpp>
#include <kmeans.h>
using namespace std;
using namespace cv;
#pragma comment(lib, "opencv_core246.lib")
#pragma comment(lib, "opencv_highgui246.lib")
#pragma comment(lib, "vl.lib")
int main()
{
// data generation
float data[200];
RNG rng(time(0));
for (int i = 0; i < 50; i++)
{
data[i*2] = rng.uniform(20, 230);
data[i*2+1] = rng.uniform(271, 480);
data[100+i*2] = rng.uniform(271, 480);
data[100+i*2+1] = rng.uniform(20, 230);
}
// kmeans initialization
VlKMeans *km = vl_kmeans_new(VL_TYPE_FLOAT, VlDistanceL2);
// parameter setting
vl_kmeans_set_algorithm(km, VlKMeansAlgorithm::VlKMeansLloyd);
vl_kmeans_set_initialization(km, VlKMeansInitialization::VlKMeansPlusPlus);
// kmeans clustering
vl_kmeans_cluster(km, data, 2, 100, 2);
// get centers
const float *centers = (const float *)vl_kmeans_get_centers(km);
// quanization
vl_uint32 assignments[100];
float distances[100];
vl_kmeans_quantize(km, assignments, distances, data, 100);
// result visualization
Mat image(500, 500, CV_8UC3);
circle(image, Point(centers[0],centers[1]), 3, Scalar(255,0,0), 2);
circle(image, Point(centers[2],centers[3]), 3, Scalar(0,0,255), 2);
for (int i = 0; i < 100; i++)
{
if (assignments[i] == 0)
circle(image, Point(data[i*2],data[i*2+1]), 1, Scalar(255,0,0), 2);
else
circle(image, Point(data[i*2],data[i*2+1]), 1, Scalar(0,0,255), 2);
}
cvShowImage("Image", &(IplImage)image);
waitKey();
// termination
vl_kmeans_delete(km);
return 0;
}
#include <kmeans.h>
using namespace std;
using namespace cv;
#pragma comment(lib, "opencv_core246.lib")
#pragma comment(lib, "opencv_highgui246.lib")
#pragma comment(lib, "vl.lib")
int main()
{
// data generation
float data[200];
RNG rng(time(0));
for (int i = 0; i < 50; i++)
{
data[i*2] = rng.uniform(20, 230);
data[i*2+1] = rng.uniform(271, 480);
data[100+i*2] = rng.uniform(271, 480);
data[100+i*2+1] = rng.uniform(20, 230);
}
// kmeans initialization
VlKMeans *km = vl_kmeans_new(VL_TYPE_FLOAT, VlDistanceL2);
// parameter setting
vl_kmeans_set_algorithm(km, VlKMeansAlgorithm::VlKMeansLloyd);
vl_kmeans_set_initialization(km, VlKMeansInitialization::VlKMeansPlusPlus);
// kmeans clustering
vl_kmeans_cluster(km, data, 2, 100, 2);
// get centers
const float *centers = (const float *)vl_kmeans_get_centers(km);
// quanization
vl_uint32 assignments[100];
float distances[100];
vl_kmeans_quantize(km, assignments, distances, data, 100);
// result visualization
Mat image(500, 500, CV_8UC3);
circle(image, Point(centers[0],centers[1]), 3, Scalar(255,0,0), 2);
circle(image, Point(centers[2],centers[3]), 3, Scalar(0,0,255), 2);
for (int i = 0; i < 100; i++)
{
if (assignments[i] == 0)
circle(image, Point(data[i*2],data[i*2+1]), 1, Scalar(255,0,0), 2);
else
circle(image, Point(data[i*2],data[i*2+1]), 1, Scalar(0,0,255), 2);
}
cvShowImage("Image", &(IplImage)image);
waitKey();
// termination
vl_kmeans_delete(km);
return 0;
}
라벨:
clustering,
kmeans,
opencv,
vlfeat
피드 구독하기:
글 (Atom)